

From Beginner to Advanced with AI,ML & Data Science

-Suryanshsk

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 2

About the Author

Avanish Singh is a passionate software developer, full-stack web
developer, and AI enthusiast with a deep
expertise in Python, Java, Flutter, AI, and
ML. With a career rooted in solving
complex problems through innovative
coding solutions, Avanish has
contributed to numerous projects across
various domains, from web development
to artificial intelligence.

A dedicated programmer and lifelong
learner, Avanish has mastered the art of
making complex concepts accessible and
understandable. He is an experienced
educator and mentor, guiding aspiring
developers through the intricacies of
coding and helping them achieve their goals.

In addition to his professional pursuits, Avanish is an active
participant in hackathons and coding competitions, where he has
honed his skills and contributed to groundbreaking projects. His
approach to Python programming is both practical and insightful,
making him a trusted voice in the tech community.

When not coding, Avanish enjoys exploring new technologies,
contributing to open-source projects, and sharing his knowledge
through workshops and online platforms.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 3

Table of Contents

1. Introduction to Python Programming ...5
o What is Python? ..6
o Why Learn Python? ...7
o Installing Python ...8
o Setting Up Your Development Environment ..9
o Running Your First Python Program ..10

2. Python Basics ...12
o Variables and Data Types ...12
o Basic Input and Output ..13
o Arithmetic Operations ...14
o Comments in Python ...15
o Python Syntax and Indentation ...16

3. Control Structures ..19
o Conditional Statements: if, elif, else ...19
o Loops: for Loop, while Loop ..21
o Break and Continue Statements ..23
o Exception Handling: try, except, finally ...24

4. Functions and Modules ...26
o Defining Functions ..26
o Function Arguments and Return Values ...27
o Lambda Functions ...29
o Importing Modules ..30
o Creating Your Own Modules ..32
o PIP and Installing External Modules ...33

5. Data Structures ..34
o Lists ...34
o Tuples ..36
o Sets ..37
o Dictionaries ...38
o List Comprehensions ...40

6. Object-Oriented Programming (OOP) ...42
o Classes and Objects ...42
o Constructors and Destructors ..43
o Inheritance ..44
o Polymorphism ...46
o Encapsulation ..46
o Abstract Classes and Interfaces ...47

7. File Handling ...49
o Reading from and Writing to Files ..49
o Working with CSV Files ...50
o File Methods and Operations ...51

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 4

o Exception Handling in File Operations ..52
8. Advanced Python Concepts ...53

o Generators and Iterators ...53
o Decorators ..54
o Context Managers ..55
o Working with Dates and Times ...57
o Regular Expressions ..58

9. Python for Web Development ..60
o Introduction to Web Development with Python ...,60
o Flask: A Micro Web Framework ...,.60
o Django: A Full-Stack Web Framework ..,62
o Building a Simple Web Application ..,.63
o Connecting to a Database ...,64

10. Introduction to Data Science ...,64
o What is Data Science? ..,64
o Python Libraries for Data Science: NumPy, Pandas, Matplotlib ..65
o Data Cleaning and Preprocessing ..66
o Data Visualization ...68
o Basic Statistical Analysis ..69

11. Machine Learning with Python ...70
o Introduction to Machine Learning ...70
o Supervised vs. Unsupervised Learning ...,....70
o Scikit-Learn Library ...,...70
o Building Your First Machine Learning Model ...72
o Evaluating Model Performance ...72

12. Artificial Intelligence with Python ...74
o Introduction to Artificial Intelligence ..74
o Natural Language Processing (NLP) ...74
o Deep Learning with TensorFlow and Keras ..75
o Creating AI Models ...77
o Implementing AI in Python Projects ...79

13. Python for Automation ...80
o Automating Tasks with Python ...80
o Working with APIs ..80
o Web Scraping with BeautifulSoup ..81
o Automating Excel with OpenPyXL ..82
o Automating Emails and Social Media Posts ...83

14. Building Real-World Projects ..85
o Python Project 1: Personal Voice Assistant ..85
o Python Project 2: E-Commerce Recommendation System ...88
o Python Project 3: Automated Stock Trading Bot ..90

15. Preparing for Placement Interviews ..92
o Python Coding Questions for Interviews ..92
o Solving Problems with Python: A Step-by-Step Guide ..93
o Data Structures and Algorithms in Python ..95
o Tips for Cracking Coding Interviews ..98

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 5

o Practice Interview Questions ...99
16. Conclusion ..101

o Recap of Key Concepts ...101
o Further Learning Resources ..102
o Final Words of Encouragement ..,102

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 6

Chapter 1: Introduction to Python Programming

1.1 What is Python?

Python is a high-level, interpreted programming language that was created by Guido van
Rossum and first released in 1991. It is designed to be easy to read and write, with a syntax that
emphasizes readability and simplicity. Python supports multiple programming paradigms,
including procedural, object-oriented, and functional programming.

Key Features of Python:

 Interpreted Language: Python code is executed line by line, which makes it easier to test and
debug.

 High-Level Language: Python abstracts away many of the complexities of computer operations,
allowing you to focus on solving problems rather than managing memory or dealing with low-
level system details.

 Dynamically Typed: In Python, you don't need to declare the type of a variable when you
create one; Python automatically assigns the type based on the value you provide.

 Extensive Standard Library: Python comes with a large standard library that includes modules
and packages for various tasks, such as handling files, working with data, and performing
network operations

Example Code:

Explanation:

 The print() function displays the text "Welcome to Python Programming!" on the screen.

Output:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 7

1.2 Why Learn Python?

Python is one of the most popular programming languages in the world, and there are several
reasons why learning Python is beneficial:

1.2.1 Ease of Learning

Python’s syntax is clear, intuitive, and close to human language. This makes it easier to learn,
especially for beginners who are new to programming.

1.2.2 Versatility

Python can be used for various applications, such as:

 Web Development: Frameworks like Django and Flask make it easy to build web applications.
 Data Science and Machine Learning: Libraries like NumPy, Pandas, and TensorFlow are

extensively used in these fields.
 Automation: Python can automate repetitive tasks, making it a valuable tool for productivity.
 Software Development: Python is used in developing desktop applications, games, and

complex algorithms.

1.2.3 Large Community and Resources

Python has a vast community of developers, which means there are many resources available
for learning and problem-solving. Whether it's tutorials, forums, or documentation, you'll find
plenty of help when learning Python.

1.2.4 Career Opportunities

Python is widely used in industries, including technology, finance, healthcare, and more.
Proficiency in Python opens doors to various career opportunities, such as software
development, data science, and AI/ML engineering.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 8

1.3 Installing Python

To start coding in Python, you first need to install Python on your system. Here’s a step-by-step
guide:

1.3.1 Downloading Python

1. Visit the Python Official Website: Go to python.org and navigate to the Downloads section.
2. Choose Your Operating System: Select your operating system (Windows, macOS, or Linux) and

download the latest version of Python.

1.3.2 Installing Python

1. Run the Installer: Open the downloaded installer.
2. Add Python to PATH: Check the box that says “Add Python to PATH” before proceeding with

the installation. This ensures that you can run Python from the command line.
3. Choose Installation Options: You can proceed with the default installation options or

customize them as per your needs.
4. Complete the Installation: Click “Install Now” and wait for the installation to complete.

1.3.3 Verifying the Installation

After installation, verify that Python is installed correctly:

1. Open a Terminal or Command Prompt: Depending on your OS, open a terminal
(macOS/Linux) or command prompt (Windows)

2. Check Python Version: Type the following command and press Enter:

3. Check PIP Installation: PIP (Python Package Installer) should also be installed
with Python. Verify it using:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 9

If both commands return a version number, your installation is successful.

1.4 Setting Up Your Development Environment
1.4.1 Choosing a Text Editor or IDE

A text editor or Integrated Development Environment (IDE) is where you'll write and run your
Python code. Here are some popular options:

 Text Editors:
o Sublime Text: A lightweight, versatile text editor that supports multiple programming

languages.
o Notepad++: A simple yet powerful text editor with support for various file types and

plugins.
 IDEs:

o PyCharm: A powerful IDE specifically for Python, with features like intelligent code
completion, debugging, and more.

o Visual Studio Code: A popular open-source code editor with excellent support for
Python through extensions.

1.4.2 Installing Additional Tools

You may also want to install the following tools to enhance your Python development
experience:

 Jupyter Notebook: A web-based application that allows you to create and share
documents containing live code, equations, visualizations, and explanatory text. It’s
especially useful for data science and AI projects.

o Install via pip:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 10

Virtual Environment: It’s a good practice to use virtual environments to manage dependencies
for different projects. This keeps your projects isolated and ensures that you have the right
packages installed for each project.

 Create a virtual environment

Activate the virtual environment:

 On Windows:

1.5 Running Your First Python Program

Now that Python is installed, let's write and run your first Python program.

1.5.1 Using the Command Line

1. Open Your Terminal or Command Prompt: On Windows, you can search for "cmd" in the
start menu. On macOS/Linux, open a terminal window.

2. Start the Python Interpreter: Type python and press Enter.
3. Write Your Program: At the >>> prompt, type the following code and press Enter:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 11

4. Exit the Interpreter: Type exit() or press Ctrl + Z (on Windows) or Ctrl + D (on
macOS/Linux) to exit.

1.5.2 Running a Python Script

1. Create a Python Script:
o Open your text editor or IDE and create a new file.
o Save the file with a .py extension, e.g., hello.py.
o In the file, write the following code:

Run the Script from the Command Line:

 Navigate to the directory where your script is saved using the cd command.
 Run the script by typing:

 Output:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 12

Chapter 2: Python Basics

2.1 Variables and Data Types

In Python, variables are used to store data. A variable is essentially a name that refers to a value.
Python supports various data types to store different kinds of data.

2.1.1 Variables

A variable in Python is created when you assign a value to it. You don’t need to declare the variable
type explicitly.

Example Code:

Explanation:

 name is a string variable that stores text.
 age is an integer variable that stores whole numbers.
 is_student is a boolean variable that stores True or False.

2.1.2 Data Types

Python has several built-in data types:

1. Integers: Whole numbers, e.g., 10, -5, 0.
2. Floats: Decimal numbers, e.g., 3.14, -2.5.
3. Strings: Sequence of characters, e.g., "Hello, World!".
4. Booleans: Represents True or False.
5. Lists: Ordered collection of items, e.g., [1, 2, 3, 4].
6. Tuples: Ordered collection of items (immutable), e.g., (1, 2, 3, 4).
7. Dictionaries: Collection of key-value pairs, e.g., {"name": "Suryanshsk", "age": 18}.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 13

Example Code:

Explanation:

 Each variable is assigned a value of a specific data type.

2.2 Basic Input and Output

Python provides simple functions to interact with users by taking input and displaying output.

2.2.1 Output using print() Function

The print() function is used to display output on the screen.

Example Code:

Explanation:

 The print() function displays the text "Hello, World!" on the screen.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 14

2.2.2 Input using input() Function

The input() function is used to take input from the user.

Example Code:

Explanation:

 The input() function prompts the user to enter a value. The entered value is stored in the name
variable.

 The print() function then displays a greeting message using the entered name.

Output:

2.3 Arithmetic Operations

Python can perform various arithmetic operations using basic operators like +, -, *, /, etc.

2.3.1 Basic Arithmetic Operators

1. Addition (+): Adds two numbers.
2. Subtraction (-): Subtracts the second number from the first.
3. Multiplication (*): Multiplies two numbers.
4. Division (/): Divides the first number by the second.
5. Modulus (%): Returns the remainder of the division.
6. Exponentiation (**): Raises the first number to the power of the second.
7. Floor Division (//): Divides and returns the largest integer less than or equal to the result.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 15

Example Code:

Explanation:

 Each arithmetic operation is performed using the corresponding operator, and the results are
stored in variables.

Output:

2.4 Comments in Python

Comments are used to explain code and make it more readable. Python supports single-line and multi-
line comments.

2.4.1 Single-Line Comments

Single-line comments start with a # symbol.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 16

Example Code:

Explanation:

 Comments are ignored by the Python interpreter and are only meant for the developer's reference.

2.4.2 Multi-Line Comments

Multi-line comments can be created using triple quotes (''' or """).

Example Code:

Explanation:

 Multi-line comments are typically used to describe sections of code or provide detailed
explanations.

Output

2.5 Python Syntax and Indentation

Python syntax refers to the rules that define how a Python program is written. One of Python's most
unique features is its use of indentation to define blocks of code.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 17

2.5.1 Python Syntax

Python syntax is designed to be readable and concise. Here are some basic rules:

1. Case Sensitivity: Python is case-sensitive, meaning Variable and variable are considered different.
2. Statements: Python statements typically end with a newline. You can use a semicolon (;) to separate

multiple statements on the same line.
3. Code Blocks: Code blocks in Python are defined by indentation, not by braces {}.

Example Code:

Explanation:

 The if statement checks if x is less than y. If true, it prints a message; otherwise, it executes the
else block.

Output:

2.5.2 Indentation in Python

Indentation is crucial in Python as it defines the scope of loops, functions, classes, and other control
structures.

 Standard Indentation: Python typically uses 4 spaces for indentation.
 Consistency: Always maintain consistent indentation throughout your code.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 18

Example Code:

Explanation:

 The code inside the if block is indented, indicating that it belongs to the block. The final print
statement is outside the block, so it’s not indented.

Output:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 19

Chapter 3: Control Structures

Control structures are fundamental to any programming language, allowing developers to control the
flow of the program's execution based on conditions, loops, and exception handling. This chapter
covers the essential control structures in Python, including conditional statements, loops, and exception
handling.

3.1 Conditional Statements: if, elif, else

Conditional statements allow you to execute certain pieces of code based on specific conditions.
Python provides if, elif, and else statements to implement decision-making in your code.

3.1.1 The if Statement

The if statement is used to test a condition. If the condition is True, the code block under the if
statement is executed.

Example Code:

Explanation:

 The if statement checks whether x is greater than 5. Since the condition is True, the message is
printed.

Output:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 20

3.1.2 The elif Statement

The elif (short for "else if") statement allows you to check multiple conditions. If the first if
condition is False, the elif condition is checked.

Example Code:

Explanation:

 The first condition x > 15 is False, so Python moves to the elif statement, which is True.
Therefore, the message is printed.

Output:

3.1.3 The else Statement

The else statement is used to define a block of code that will run if none of the previous conditions are
True.

Example Code:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 21

Explanation:

 Since both the if and elif conditions are False, the else block is executed.

Output:

3.2 Loops: for Loop, while Loop

Loops are used to execute a block of code repeatedly. Python provides two types of loops: for loops
and while loops.

3.2.1 for Loop

A for loop is used to iterate over a sequence (like a list, tuple, string, or range) and execute a block of
code for each item in the sequence.

Example Code:

Explanation:

 The for loop iterates over each item in the fruits list and prints it.

Output:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 22

3.2.1.1 range() Function

The range() function generates a sequence of numbers, which is commonly used in for loops.

Example Code:

Explanation:

 The range(5) function generates numbers from 0 to 4, and the for loop iterates over these
numbers.

Output:

3.2.2 while Loop

A while loop continues to execute a block of code as long as a specified condition remains True.

Example Code:

Explanation:

 The while loop checks whether x is greater than 0. As long as the condition is True, it prints the
value of x and then decrements it by 1.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 23

Output:

3.3 Break and Continue Statements

The break and continue statements are used to control the flow of loops.

3.3.1 The break Statement

The break statement is used to exit a loop prematurely, regardless of the loop's condition.

Example Code:

Explanation:

 The loop will print numbers from 0 to 4. When i equals 5, the break statement exits the loop.

Output:

3.3.2 The continue Statement

The continue statement skips the rest of the code inside the loop for the current iteration and jumps to
the next iteration of the loop.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 24

Example Code:

Explanation:

 The loop will print only odd numbers because the continue statement skips the even numbers.

Output:

3.4 Exception Handling: try, except, finally

Exception handling in Python is a way to handle errors that occur during the execution of a program.
This prevents the program from crashing and allows it to handle the error gracefully.

3.4.1 The try and except Blocks

The try block contains the code that might throw an exception, and the except block contains the
code that handles the exception.

Example Code:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 25

Explanation:

 The try block attempts to divide 10 by 0, which raises a ZeroDivisionError. The except
block catches the error and prints an error message.

Output:

3.4.2 The finally Block

The finally block contains code that will run no matter what, even if an exception occurs. It's
typically used for cleanup actions like closing files or releasing resources.

Example Code:

Explanation:

 The finally block ensures that the file is closed, regardless of whether an exception occurs.

Output:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 26

Chapter 4: Functions and Modules

Functions and modules are fundamental components of Python programming. They help organize code
into reusable blocks, making it more manageable and modular. This chapter covers how to define
functions, use function arguments, work with lambda functions, and import and create modules. It also
explores how to use PIP to install external modules.

4.1 Defining Functions

A function is a block of reusable code that performs a specific task. Functions help break down
complex problems into smaller, manageable pieces.

4.1.1 Syntax of a Function

A function is defined using the def keyword, followed by the function name, parentheses, and a colon.
The code block within the function is indented.

Example Code:

Explanation:

 greet is the function name.
 name is a parameter that the function accepts.
 The function prints a greeting message using the provided name.

Output:

4.1.2 Calling a Function

To use a function, you call it by its name followed by parentheses, passing any required arguments.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 27

Example Code:

Explanation:

 The add function takes two arguments a and b, adds them, and returns the result.
 The result is then printed.

Output:

4.2 Function Arguments and Return Values

Functions can take arguments and return values, which allow them to work with different inputs and
produce outputs.

4.2.1 Positional Arguments

Positional arguments are the most straightforward way to pass values to a function. The values are
assigned to the parameters in the order they are passed.

Example Code:

Explanation:

 The function subtracts b from a and returns the result.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 28

Output:

4.2.2 Keyword Arguments

Keyword arguments allow you to specify the argument values by name, which can make the function
call more readable.

Example Code:

Explanation:

 The values of a and b are specified using their parameter names.

Output:

4.2.3 Default Arguments

You can provide default values for arguments, making them optional when the function is called.

Example Code:

Explanation:

 The exponent parameter has a default value of 2.
 If exponent is not provided, the function uses the default value.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 29

Output:

4.2.4 Variable-Length Arguments

You can use *args and **kwargs to pass a variable number of arguments to a function.

Example Code:

Explanation:

 The *args syntax allows the function to accept any number of positional arguments, which are
then summed.

Output:

4.3 Lambda Functions

Lambda functions, also known as anonymous functions, are small, one-line functions defined using the
lambda keyword. They are often used for short, simple operations.

4.3.1 Syntax of Lambda Functions

The syntax for a lambda function is:

Example Code:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 30

Explanation:

 The lambda function takes one argument x and returns x squared.

Output:

4.3.2 Using Lambda Functions

Lambda functions are commonly used in situations where a simple function is needed, such as in
sorting or filtering data.

Example Code:

Explanation:

 The sort method uses a lambda function to sort the list.

Output:

4.4 Importing Modules

Modules are files containing Python code (variables, functions, classes) that can be imported and used
in other Python programs. Python has a rich standard library of modules for various tasks.

4.4.1 Importing a Module

You can import a module using the import keyword.

Example Code:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 31

Explanation:

 The math module is imported, and its sqrt function is used to calculate the square root of 16.

Output:

4.4.2 Importing Specific Functions or Variables

You can also import specific functions or variables from a module using the from keyword.

Example Code:

Explanation:

 The pi constant and sin function are imported directly from the math module.

Output:

4.4.3 Aliasing Modules

You can give a module or function an alias using the as keyword, which can make your code more
concise.

Example Code:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 32

Explanation:

 The numpy module is imported with the alias np.

Output:

4.5 Creating Your Own Modules

You can create your own modules by writing functions, variables, or classes in a Python file and
importing them into other files.

4.5.1 Writing a Module

To create a module, simply save a Python script with a .py extension.

Example Code (mymodule.py):

4.5.2 Importing Your Module

You can import your custom module just like any other Python module.

Example Code (in another file):

Explanation:

 The greet function from mymodule.py is used in another Python script.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 33

Output:

4.6 PIP and Installing External Modules

PIP is Python's package installer, used to install external modules not included in the standard library.

4.6.1 Installing a Module with PIP

You can install a module using the pip install command.

Example Command:

Explanation:

 This command installs the requests module, which is used for making HTTP requests.

4.6.2 Using an Installed Module

Once installed, you can import and use the module in your code.

Example Code:

Explanation:

 The requests module is used to make a GET request to the GitHub API.

Output:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 34

Chapter 5: Data Structures

Data structures are a way of organizing and storing data so that it can be accessed and modified
efficiently. This chapter covers Python's built-in data structures: lists, tuples, sets, and dictionaries. It
also introduces list comprehensions for creating new lists in a concise way.

5.1 Lists

Lists are ordered collections of items, which can be of any data type. Lists are mutable, meaning their
contents can be changed after creation.

5.1.1 Creating Lists

Lists are created by placing items inside square brackets [], separated by commas.

Example Code:

Explanation:

 A list of fruits is created and printed.

Output:

5.1.2 Accessing List Elements

You can access individual elements in a list by their index, starting at 0.

Example Code:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 35

Explanation:

 The first element ("apple") and the last element ("cherry") are accessed using their respective
indices.

Output:

5.1.3 Modifying Lists

Lists are mutable, so you can change their elements after creation.

Example Code:

Explanation:

 The second element of the list is changed from "banana" to "blueberry".

Output:

5.1.4 List Methods

Python provides several methods to work with lists, such as append, remove, sort, and more.

Example Code:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 36

Explanation:

 "orange" is added to the list, "apple" is removed, and the list is sorted alphabetically.

Output:

5.2 Tuples

Tuples are similar to lists but are immutable, meaning their contents cannot be changed after creation.
Tuples are often used to group related data.

5.2.1 Creating Tuples

Tuples are created by placing items inside parentheses (), separated by commas.

Example Code:

Explanation:

 A tuple representing a point with coordinates (10, 20) is created.

Output:

5.2.2 Accessing Tuple Elements

You can access individual elements in a tuple by their index, just like lists.

Example Code:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 37

Explanation:

 The first element (10) of the tuple is accessed.

Output:

5.2.3 Tuple Unpacking

You can unpack the values of a tuple into separate variables.

Example Code:

Explanation:

 The values of the tuple point are unpacked into the variables x and y.

Output:

5.3 Sets

Sets are unordered collections of unique items. They are useful when you need to ensure that an
element is present only once in a collection.

5.3.1 Creating Sets

Sets are created by placing items inside curly braces {}, separated by commas, or by using the set()
function.

Example Code:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 38

Explanation:

 A set is created with unique elements. The duplicate 4 is automatically removed.

Output:

5.3.2 Set Operations

Sets support mathematical operations like union, intersection, difference, and symmetric difference.

Example Code:

Explanation:

 The operations demonstrate the various ways sets can be combined and compared.

Output:

5.4 Dictionaries

Dictionaries are collections of key-value pairs, where each key is unique, and is associated with a
specific value. Dictionaries are mutable, so their contents can be changed after creation.

5.4.1 Creating Dictionaries

Dictionaries are created by placing key-value pairs inside curly braces {}, separated by commas. The
key and value are separated by a colon :.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 39

Example Code:

Explanation:

 A dictionary representing a student is created, with keys "name", "age", and "grade".

Output:

5.4.2 Accessing Dictionary Elements

You can access the value associated with a specific key by using square brackets [].

Example Code:

Explanation:

 The value associated with the key "name" is accessed.

Output:

5.4.3 Modifying Dictionaries

You can add, modify, or remove key-value pairs in a dictionary.

Example Code:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 40

Explanation:

 The "age" value is updated, a new key "major" is added, and the "grade" key is removed.

Output:

5.5 List Comprehensions

List comprehensions provide a concise way to create lists. They consist of brackets containing an
expression followed by a for clause and optionally if clauses.

5.5.1 Basic List Comprehension

You can create a list of squares using a list comprehension.

Example Code:

Explanation:

 A list of squares of numbers from 1 to 5 is created using list comprehension.

Output:

5.5.2 List Comprehension with Conditionals

You can include an if statement to filter elements.

Example Code:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 41

Explanation:

 A list of even numbers from 0 to 9 is created.

Output:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 42

6. Object-Oriented Programming (OOP)

Object-Oriented Programming (OOP) is a programming paradigm that uses objects and classes to
design and structure code. It provides a clear modular structure for programs, making it easier to
manage complexity.

6.1 Classes and Objects
6.1.1 Defining a Class

A class is a blueprint for creating objects. It encapsulates data for the object and methods to manipulate
that data.

Example Code:

Explanation:

 The Dog class defines two attributes (name, breed) and one method (bark).

6.1.2 Creating an Object

An object is an instance of a class. You can create multiple objects from a single class.

Example Code:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 43

Explanation:

 my_dog is an object of the Dog class, with the name "Rex" and breed "German Shepherd".

Output:

6.2 Constructors and Destructors
6.2.1 Constructors

A constructor is a special method that is automatically called when an object is created. In Python, the
__init__ method is used as a constructor.

Example Code:

Explanation:

 The Circle class uses the __init__ constructor to initialize the radius of the circle.

6.2.2 Destructors

A destructor is a method that is automatically called when an object is deleted or goes out of scope. In
Python, the __del__ method is used as a destructor.

Example Code:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 44

Explanation:

 The Example class uses the __del__ destructor to print a message when the object is deleted.

6.3 Inheritance

Inheritance allows a class to inherit attributes and methods from another class, promoting code
reusability.

6.3.1 Single Inheritance

In single inheritance, a class (child) inherits from a single parent class.

Example Code:

Explanation:

 The Dog class inherits from the Animal class and overrides the speak method.

6.3.2 Multiple Inheritance

In multiple inheritance, a class can inherit from more than one parent class.

Example Code:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 45

Explanation:

 The Amphibian class inherits from both Walker and Swimmer classes.

6.3.3 Multilevel Inheritance

In multilevel inheritance, a class is derived from another derived class.

Example Code:

Explanation:

 The Human class inherits from Mammal, which in turn inherits from LivingBeing.

6.3.4 Hierarchical Inheritance

In hierarchical inheritance, multiple classes inherit from a single parent class.

Example Code:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 46

Explanation:

 Both Car and Bike inherit from the Vehicle class.

6.4 Polymorphism

Polymorphism allows different classes to be treated as instances of the same class through a common
interface. It promotes flexibility and integration.

6.4.1 Method Overriding

Method overriding allows a child class to provide a specific implementation of a method already
defined in its parent class.

Example Code:

Explanation:

 The Penguin class overrides the fly method of the Bird class.

6.4.2 Method Overloading

Python does not support method overloading by default, but you can achieve it using default
arguments.

Example Code:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 47

6.5 Encapsulation

Encapsulation is the mechanism of restricting access to certain components of an object and only
exposing a limited interface to the user.

6.5.1 Private and Protected Members

In Python, private members are denoted by a double underscore prefix (__), while protected members
use a single underscore (_).

Example Code:

Explanation:

 The __balance attribute is private and can only be accessed through the deposit and
get_balance methods.

Output:

6.6 Abstract Classes and Interfaces

Abstract classes cannot be instantiated and are meant to be subclassed. They can contain abstract
methods, which must be implemented by subclasses.

6.6.1 Creating Abstract Classes

In Python, abstract classes are created using the ABC (Abstract Base Class) module.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 48

Example Code:

Explanation:

 The Animal class is an abstract class with an abstract method make_sound. The Dog class implements
this method.

6.6.2 Interfaces

Python does not have a separate interface keyword, but abstract classes with only abstract methods can
serve as interfaces.

Example Code:

Explanation:

 The Drawable class acts as an interface with the draw method, which is implemented by the
Circle class.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 49

7. File Handling

File handling is an essential part of any application that needs to store and retrieve data. Python
provides a variety of functions and modules to work with files.

7.1 Reading from and Writing to Files
7.1.1 Opening a File

In Python, the open() function is used to open files.

Example Code:

Explanation:

 The file example.txt is opened in read mode ("r").

7.1.2 Reading a File

You can read the contents of a file using methods like read(), readline(), or readlines().

Example Code:

Explanation:

 The entire content of the file is read and printed, and the file is closed.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 50

7.1.3 Writing to a File

To write data to a file, open it in write mode ("w"), append mode ("a"), or write binary mode ("wb").

Example Code:

Explanation:

 "Hello, World!" is written to the file example.txt.

7.2 Working with CSV Files

CSV (Comma Separated Values) files are commonly used for storing tabular data.

7.2.1 Reading CSV Files

Python's csv module makes it easy to read and write CSV files.

CSV File:

Example Code:

Output:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 51

Explanation:

 This code reads each row of the data.csv file and prints it.

7.2.2 Writing to CSV Files

You can also write to CSV files using the csv module.

Example Code:

Output:

Explanation:

 This code writes two rows to the data.csv file.

7.3 File Methods and Operations
7.3.1 Common File Methods

Python provides various methods to manipulate files:

 read(): Reads the entire file.
 readline(): Reads a single line from the file.
 write(): Writes a string to the file.
 close(): Closes the file.

7.3.2 File Operations

You can perform operations like renaming, deleting, and copying files using the os and shutil
modules.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 52

Example Code:

Explanation:

 The os.rename() method renames a file, and os.remove() deletes it.

7.4 Exception Handling in File Operations

Exception handling ensures that your program can handle errors that may occur during file operations.

7.4.1 Handling File Exceptions

You can handle file-related exceptions using the try-except block.

Example Code:

Explanation:

 The code attempts to open and read a file. If the file does not exist, it catches a
FileNotFoundError.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 53

8. Advanced Python Concepts

Python provides advanced features that enhance its power and flexibility. These concepts include
generators, decorators, context managers, and more.

8.1 Generators and Iterators

8.1.1 Generators

Generators are functions that return an iterable set of items, one at a time, in a lazy manner.

Example Code:

Explanation:

 The count_up_to() function is a generator that yields numbers from 1 to max.

8.1.2 Iterators

Iterators are objects that can be iterated upon. They implement the __iter__() and __next__()
methods.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 54

Example Code:

Explanation:

 The Counter class is an iterator that produces numbers from 1 to max.

8.2 Decorators

Decorators are a powerful tool in Python that allow you to modify the behavior of a function or class
method.

8.2.1 Function Decorators

Function decorators allow you to extend or alter the behavior of functions.

Example Code:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 55

Explanation:

 The my_decorator function is applied to say_hello() using the @ syntax.

Output:

8.2.2 Class Method Decorators

Decorators can also be applied to class methods to modify their behavior.

Example Code:

Explanation:

 The method_decorator modifies the greet method of MyClass.

Output:

8.3 Context Managers

Context managers allow you to allocate and release resources precisely when you want to.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 56

8.3.1 Using with Statements

The with statement is used with context managers to ensure that resources are properly managed.

Example Code:

Explanation:

 The with statement automatically closes the file when the block inside it is exited.

8.3.2 Creating Custom Context Managers

You can create custom context managers by defining the __enter__ and __exit__ methods.

Example Code:

Explanation:

 The MyContextManager class defines a custom context manager.

Output:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 57

8.4 Working with Dates and Times

Python's datetime module provides classes for manipulating dates and times.

8.4.1 Date and Time Basics

You can create and manipulate date and time objects using the datetime module.

Example Code:

Explanation:

 The datetime.now() function returns the current date and time.

8.4.2 Formatting Dates and Times

You can format date and time objects using the strftime method.

Example Code:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 58

Explanation:

 The strftime method formats the date and time according to the specified format.

8.4.3 Parsing Dates and Times

You can parse a string into a date and time object using the strptime method.

Example Code:

Explanation:

 The strptime method parses a date string into a datetime object.

8.5 Regular Expressions

Regular expressions (regex) are patterns used to match character combinations in strings. Python's re
module provides support for regex operations.

8.5.1 Basic Regex Operations

You can use the re module to perform basic regex operations like searching, matching, and replacing.

Example Code:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 59

Explanation:

 The re.search() function searches for the pattern "quick" in the text and returns a match object if
found.

8.5.2 Matching and Extracting Data

You can use regex to match and extract specific patterns from text.

Example Code:

Explanation:

 The regex pattern matches an email address in the text and returns it.

8.5.3 Replacing and Splitting Strings

You can use regex to replace and split strings based on specific patterns.

Example Code:

Explanation:

 The re.sub() function replaces all occurrences of "ain" with "XYZ" in the text.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 60

9. Python for Web Development

Python is a versatile language that's popular in web development, both for backend and full-stack
development.

9.1 Introduction to Web Development with Python

Web development with Python involves creating websites or web applications using Python's extensive
libraries and frameworks.

9.1.1 Frontend vs. Backend

 Frontend: The part of a web application that users interact with, usually built using HTML, CSS, and
JavaScript.

 Backend: The server-side part of a web application, handling business logic, database interactions, and
more.

9.1.2 Why Use Python for Web Development?

 Ease of Use: Python's syntax is simple and easy to learn.
 Strong Frameworks: Python has powerful web frameworks like Flask and Django.
 Community Support: A large, active community provides extensive resources.

9.2 Flask: A Micro Web Framework

Flask is a lightweight and flexible web framework for building small to medium-sized web
applications.

9.2.1 Installing Flask

To install Flask, use the following command:

9.2.2 Creating a Basic Flask Application

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 61

Example Code:

Output:

Explanation:

 This code creates a basic Flask application that displays "Hello, World!" on the homepage.

9.2.3 Routing in Flask

Routing maps URLs to functions.

Example Code:

Explanation:

 The /about route maps to the about function, which returns a string.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 62

9.3 Django: A Full-Stack Web Framework

Django is a high-level web framework that encourages rapid development and clean, pragmatic design.

9.3.1 Installing Django

To install Django, use the following command:

9.3.2 Creating a Django Project

Command Line:

Explanation:

 This sequence of commands creates a new Django project and starts the development server.

9.3.3 Django Models and Views

Django's models define the structure of your database, while views handle the logic of what data is
presented to the user.

Example Code:

Explanation:

 This code defines an Article model with title and content fields.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 63

9.3.4 Templating in Django

Django uses templates to separate HTML design from Python code.

Example Template:

Explanation:

 This template displays the title and content of an article using Django's template language.

9.4 Building a Simple Web Application

Combining Flask or Django, you can build a simple web application from scratch.

9.4.1 Defining the Application Structure

Organize your files and folders to keep your project maintainable.

Structure Example:

Explanation:

 The templates/ folder contains HTML files, and static/ holds CSS and JavaScript files.

9.4.2 Creating the Application

Example Code:

 Define routes, templates, and models in your Flask or Django application to create a fully functional
web application.

We Will Develop An Simple Website With Flask, Django And Python in Our Project Section

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 64

9.5 Connecting to a Database

Web applications often need to store data persistently, which is done through databases.

9.5.1 Setting Up a Database in Flask

Use SQLAlchemy for database interactions in Flask.

Example Code:

Explanation:

 This code configures Flask to use a SQLite database.

9.5.2 Setting Up a Database in Django

Django comes with built-in support for several databases, including SQLite.

Example Code:

 Configure your database in the settings.py file:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 65

10. Introduction to Data Science

Data science is the process of extracting valuable insights from data using various techniques and tools.

10.1 What is Data Science?

Data science combines statistics, computer science, and domain knowledge to analyze data and derive
insights.

10.1.1 The Data Science Process

 Data Collection: Gathering raw data from various sources.
 Data Cleaning: Removing inconsistencies and preparing the data for analysis.
 Data Analysis: Applying statistical techniques to extract insights.
 Data Visualization: Representing data graphically to make it easier to understand.

10.2 Python Libraries for Data Science: NumPy, Pandas, Matplotlib

Python offers several powerful libraries for data science.

10.2.1 NumPy

NumPy is the foundational library for numerical computing in Python.

Example Code:

Explanation:

 This code creates a NumPy array and calculates its mean.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 66

10.2.2 Pandas

Pandas is used for data manipulation and analysis.

Example Code:

Explanation:

 This code creates a DataFrame and displays the first few rows.

10.2.3 Matplotlib

Matplotlib is a plotting library for creating static, animated, and interactive visualizations.

Example Code:

Explanation:

 This code creates a simple line plot and displays it.

10.3 Data Cleaning and Preprocessing

Before analyzing data, you must clean and preprocess it.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 67

10.3.1 Handling Missing Data

Missing data can be handled by removing or imputing values.

Example Code:

Explanation:

 This code shows how to handle missing data in a DataFrame.

10.3.2 Data Transformation

Transforming data is essential for making it suitable for analysis.

Example Code:

Explanation:

 This code doubles the values in the Age column.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 68

10.4 Data Visualization

Data visualization helps communicate insights effectively.

10.4.1 Creating Basic Plots

You can create basic plots like histograms, bar charts, and scatter plots using Matplotlib.

Example Code:

Explanation:

 This code creates a histogram of the Age column.

10.4.2 Advanced Visualization Techniques

Use Seaborn for more complex visualizations.

Example Code:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 69

Explanation:

 This code creates a boxplot to visualize the distribution of ages.

10.5 Basic Statistical Analysis

Statistics are essential for understanding data and making inferences.

10.5.1 Descriptive Statistics

Calculate basic statistics like mean, median, and mode.

Example Code:

Explanation:

 This code calculates the mean, median, and mode of the Age column.

10.5.2 Correlation Analysis

Correlation measures the relationship between two variables.

Example Code:

Explanation:

 This code calculates the correlation matrix for the DataFrame.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 70

11. Machine Learning with Python

Machine learning (ML) is a subset of artificial intelligence (AI) that enables systems to learn from data
and make predictions.

11.1 Introduction to Machine Learning
11.1.1 What is Machine Learning?

Machine learning involves training models on data to make predictions or decisions without being
explicitly programmed.

11.1.2 Types of Machine Learning

 Supervised Learning: The model is trained on labeled data.
 Unsupervised Learning: The model identifies patterns in unlabeled data.
 Reinforcement Learning: The model learns through rewards and punishments.

11.2 Supervised vs. Unsupervised Learning
11.2.1 Supervised Learning

In supervised learning, the model learns from labeled data.

Example:

 Predicting house prices based on historical data.

11.2.2 Unsupervised Learning

In unsupervised learning, the model finds patterns in data without explicit labels.

Example:

 Clustering customers based on purchasing behavior.

11.3 Scikit-Learn Library

Scikit-Learn is a powerful library for machine learning in Python.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 71

11.3.1 Installing Scikit-Learn

Install Scikit-Learn using pip:

11.3.2 Basic Usage of Scikit-Learn

Scikit-Learn provides tools for data preprocessing, model training, and evaluation.

#pip install scikit-learn

Example Code:

Output:

Explanation:

 This code demonstrates the basic workflow of loading data, splitting it into training and test sets,
training a model, and evaluating its accuracy.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 72

11.4 Building Your First Machine Learning Model
11.4.1 The Machine Learning Workflow

1. Data Collection: Gather data from various sources.
2. Data Preprocessing: Clean and transform the data.
3. Model Training: Train a machine learning model on the processed data.
4. Model Evaluation: Test the model's performance on unseen data.
5. Model Deployment: Use the model in a real-world application.

11.5 Evaluating Model Performance
11.5.1 Confusion Matrix

A confusion matrix is a table used to describe the performance of a classification model.

Example Code:

Output:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 73

Explanation:

 This code generates a confusion matrix to evaluate model performance.

11.5.2 Accuracy, Precision, Recall, and F1-Score

Evaluate the model using various metrics.

Example Code:

Output:

Explanation:

 This code calculates accuracy, precision, recall, and F1-score for the model.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 74

Chapter 12: Artificial Intelligence with Python

12.1 Introduction to Artificial Intelligence

Artificial Intelligence (AI) is the simulation of human intelligence in machines that are programmed to
think, learn, and adapt. Python has become a leading language in AI due to its simplicity, a vast
number of libraries, and active community support.

12.1.1 Key Areas of AI:

 Machine Learning: Enabling computers to learn from data.
 Natural Language Processing (NLP): Allowing machines to understand and respond to human

language.
 Computer Vision: Enabling machines to interpret and understand visual data.
 Robotics: Creating intelligent robots that can interact with their environment.

12.2 Natural Language Processing (NLP)

NLP is a field of AI that focuses on the interaction between computers and human languages. Python
offers powerful libraries for NLP, including NLTK and spaCy.

12.2.1 Installing NLTK:

12.2.2 Basic NLP Tasks:

 Tokenization: Breaking text into words or sentences.
 Stop Words Removal: Removing common words that don't contribute much meaning.
 Stemming and Lemmatization: Reducing words to their base form.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 75

Example Code:

Output:

Explanation:

 This code demonstrates how to tokenize a sentence and remove stopwords.

12.3 Deep Learning with TensorFlow and Keras

Deep Learning is a subset of AI that mimics the workings of the human brain in processing data and
creating patterns for decision making.

12.3.1 Installing TensorFlow and Keras:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 76

12.3.2 Building a Neural Network with Keras:

Keras, integrated with TensorFlow, provides a high-level API to build and train deep learning models.

Example Code:

Output:

What is the purpose of each layer in this neural network?

First Dense Layer:
Purpose: This layer has 64 neurons and uses the ReLU activation function.
Role: It serves as the first hidden layer, transforming the input data (with 10 features)
into a higher-dimensional space. The ReLU activation helps introduce non-linearity, allowing
the network to learn more complex patterns.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 77

Second Dense Layer:
Purpose: This layer also has 64 neurons and uses the ReLU activation function.
Role: It acts as an additional hidden layer, further transforming the data. Adding more
layers allows the network to learn more abstract features and improve its ability to
generalize from the training data.

Output Layer:
Purpose: This layer has 1 neuron and uses the sigmoid activation function.
Role: It serves as the output layer, producing a single value between 0 and 1. The sigmoid
activation is suitable for binary classification tasks, as it outputs a probability-like
value indicating the likelihood of the input belonging to a particular class.
Each layer in the network contributes to transforming the input data step-by-step, enabling
the model to learn and make predictions.

Explanation:

 This code sets up a simple feedforward neural network with Keras, designed for binary
classification.

12.4 Creating AI Models
12.4.1 Building a Sentiment Analysis Model:

Sentiment analysis is a popular AI application used to determine the sentiment behind a text (e.g.,
positive, negative, neutral).

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 78

Example Code:

Output:

Explanation:

 This code demonstrates how to build a simple sentiment analysis model using LSTM (Long
Short-Term Memory) networks.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 79

12.5 Implementing AI in Python Projects

Integrating AI into real-world applications involves using AI models to solve specific problems, such
as image recognition, language translation, or recommendation systems.

12.5.1 Real-World Example: Chatbot

A chatbot can be created using NLP techniques and integrated with an AI model to provide meaningful
responses.

Example Code:

Explanation:

 This code shows how to create a simple chatbot using the ChatterBot library.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 80

Chapter 13: Python for Automation

13.1 Automating Tasks with Python

Python can automate repetitive tasks, freeing up time for more complex work. Automation can range
from simple tasks like renaming files to complex ones like managing entire workflows.

13.1.1 Renaming Files in a Directory:

Example Code:

Explanation:

 This script renames all files in a directory by adding a prefix and a sequential number.

13.2 Working with APIs

APIs (Application Programming Interfaces) allow Python to interact with external services, enabling
data exchange between different software systems.

13.2.1 Making API Requests:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 81

Example Code:

Explanation:

 This code makes a GET request to a public API and prints the JSON response.

13.3 Web Scraping with BeautifulSoup

Web scraping involves extracting data from websites. Python’s BeautifulSoup library makes it easy to
scrape and parse HTML and XML content.

13.3.1 Installing BeautifulSoup:

13.3.2 Scraping a Web Page:

Example Code:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 82

Output:

Explanation:

 This script extracts all <h1> headings from a web page.

13.4 Automating Excel with OpenPyXL

Python can automate Excel tasks like creating, reading, and modifying spreadsheets using the
OpenPyXL library.

13.4.1 Installing OpenPyXL:

13.4.2 Creating and Writing to an Excel File:

Example Code:

Output:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 83

Explanation:

 This code creates a new Excel file and writes data into it.

13.5 Automating Emails and Social Media Posts

Python can automate the sending of emails and posting on social media platforms, making it a valuable
tool for digital marketing and communication.

13.5.1 Sending an Email with SMTP:

Example Code:

Explanation:

 This script sends an email using Python's smtplib library.

13.5.2 Posting on Twitter with Tweepy:

#For Consumer_key Consumer_secret,Access_token,Access_token_secret

#visit https://developer.x.com/en/docs/authentication/oauth-1-0a/api-key-and-secret

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 84

Example Code:

Explanation:

 This script posts a tweet using the Tweepy library, which interacts with the Twitter API.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 85

Chapter 14 : Building Real-World Projects

Project 1: Personal Voice Assistant
Note: Create Each Project In Separate Folder And For Each Project Save every Code Of project In Separate
Folder

Example : For Project 1- Every File of Project 1 Save In Separate Folder Give Name Project 1 And for Another
Project Create Another Separate Folder

1. Project Overview

 Objective: Create a voice assistant capable of performing tasks such as answering questions,
opening applications, and retrieving information from the web.

 Tools & Libraries: Python, SpeechRecognition, pyttsx3 (text-to-speech), Wikipedia,
webbrowser, datetime, os, smtplib.

2. Setting Up the Environment

 Install necessary libraries

3. Building the Voice Recognition Module

 Code

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 86

4. Adding Text-to-Speech Capability

 Code:

5.
Implementing Core Functionalities

 Tasks: Greeting, fetching information from Wikipedia, opening applications, telling time.
 Code:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 87

Note: Be Careful About File name
6. Running the Complete Voice Assistant

 Code Integration: Combine all functionalities into a continuous loop to run the assistant.
 Output: The assistant listens for commands, processes them, and provides responses or

performs actions.

For Advance Version Of this Project Visit My GitHub Repositories:

https://github.com/suryanshsk/Python-Voice-Assistant-Suryanshsk

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 88

Project 2: E-Commerce Recommendation System
Step 1: Set Up the Project Directory

Create a project folder called ecommerce_recommendation_system. Inside this folder, create the
following files:

 preprocessing.py: For data preprocessing.
 train_model.py: For model training.
 recommend.py: For making recommendations.

Step 2: Install Required Libraries
#pip install pandas, numpy, scikit-learn

Step 3: Data Collection

You can either use a public dataset or create a synthetic dataset. Save the dataset as ratings.csv
inside the data/ folder.

Example of ratings.csv:

Step 4: Data Preprocessing (preprocessing.py)

Create a script to load and preprocess the data.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 89

Step 5: Model Training (train_model.py)

Use collaborative filtering to create the recommendation model.

Step 6: Making Recommendations (recommend.py)

Use the trained model to make recommendations.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 90

Step 7: Run the System

1. First, preprocess the data:

python preprocessing.py

2. Train the model:

python train_model.py

3. Make recommendations:

python recommend.py

Project 3: Automated Stock Trading Bot

1. Project Overview

 Objective: Create a bot that automates stock trading based on predefined strategies.
 Tools & Libraries: Python, Alpaca API, Pandas, NumPy.

2. Setting Up the Environment

 Install necessary libraries:

pip install alpaca-trade-api pandas numpy

3. Connecting to the Alpaca API

 Code:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 91

4. Implementing a Simple Trading Strategy

 Code:

5. Running the Stock Trading Bot

 Output: The bot executes trades based on the strategy and logs the transactions.

For All Others Mega Projects Visit My GitHub Repositories:

https://github.com/suryanshsk

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 92

15.Preparing for Placement Interviews

Preparing for placement interviews can be a daunting task, especially when it comes to technical
interviews that require strong coding skills. This section of your book will guide readers through the
essential topics they need to master to excel in Python coding interviews. From understanding common
coding questions to mastering data structures and algorithms, this chapter will equip your readers with
the knowledge and confidence needed to crack coding interviews successfully.

1. Python Coding Questions for Interviews

Overview: This subsection covers typical Python coding questions that candidates are likely to
encounter during technical interviews. These questions range from basic syntax and operations to more
complex problems that test a candidate’s understanding of Python’s core concepts.

Topics Covered:

 Basic Syntax Questions:
o Examples of simple print statements, variable assignments, and basic operations.
o Example:

 String Manipulation:
o Operations such as reversing a string, checking for palindromes, and finding substrings.
o Example:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 93

 List and Array Operations:
o Common list manipulations, including sorting, searching, and removing duplicates.
o Example:

 Dictionary and Set Operations:
o Working with dictionaries and sets, including common use cases like counting occurrences and

filtering data.
o sExample:

 Basic Algorithms:
o Simple algorithmic problems, such as finding the maximum or minimum in a list, or basic search

algorithms.
o Example:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 94

2. Solving Problems with Python: A Step-by-Step Guide

Overview: This section provides a step-by-step approach to solving coding problems using Python. It
emphasizes the importance of understanding the problem, planning the solution, writing clean and
efficient code, and testing thoroughly.

Topics Covered:

 Understanding the Problem:
o Techniques to carefully read and understand what the problem is asking.
o Breaking down the problem into smaller, manageable parts.
o Example:

Problem: Given a list of integers, return the indices of the two
numbers that add up to a specific target.

 Planning the Solution:
o How to brainstorm possible approaches and select the most efficient one.
o Writing pseudocode before diving into the actual coding.
o Example:

Pseudocode:
- Create a dictionary to store the difference between the target and
each element.
- Loop through the list to check if the current element exists in the
dictionary.
- If it exists, return the index.

 Writing the Code:
o Implementing the solution in Python using clear, readable code.
o Best practices for naming variables, using functions, and structuring the code.
o Example:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 95

 Testing the Solution:
o Importance of testing with various cases, including edge cases.
o How to write test cases and use Python’s unittest or pytest frameworks.

o Example:

3. Data Structures and Algorithms in Python

Overview: This section dives into the most important data structures and algorithms that every Python
developer should know. Understanding these concepts is crucial for solving complex problems
efficiently.

Topics Covered:

 Data Structures:
o Arrays and Lists:

 How to use Python’s list data structure for array-like operations.
 Example:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 96

o Stacks and Queues:
 Implementing stack and queue operations using lists and collections.deque.

 Example:

o Dictionaries and Hashmaps:
 Efficiently storing and retrieving key-value pairs.
 Example:

o Trees and Graphs:
 Basic concepts and Python implementations of binary trees, binary search trees, and

graph traversal algorithms.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 97

 Example:

 Algorithms:
o Sorting Algorithms:

 Implementations of bubble sort, merge sort, and quicksort.
 Example:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 98

o Search Algorithms:
 Linear search and binary search implementations.
 Example:

o Dynamic Programming:
 Solving problems using dynamic programming with examples like Fibonacci sequence,

knapsack problem, etc.

 Example:

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 99

4. Tips for Cracking Coding Interviews

Overview: This section provides practical advice and strategies for approaching coding interviews. It
includes tips on problem-solving techniques, time management, communication, and handling difficult
questions.

Topics Covered:

 Problem-Solving Techniques:
o Approaching problems systematically using methods like divide and conquer, and brute force

vs. optimized solutions.
o Example:

Tip: Always start with the brute force solution, then gradually optimize
it. Interviewers often appreciate seeing your thought process.

 Time Management:
o Strategies for managing time effectively during coding interviews, such as prioritizing problems

and knowing when to move on from a stuck problem.
o Example:

Tip: If you are stuck on a problem for more than 10 minutes, it's often
better to move on to the next problem and return later.

 Communication Skills:
o The importance of clearly explaining your thought process, asking clarifying questions, and

discussing your approach with the interviewer.
o Example:

Tip: Always talk through your thought process while coding. It shows the
interviewer how you think and approach problems.

 Handling Difficult Questions:
o Techniques for dealing with questions that are particularly challenging or beyond your current

knowledge.
o Example:

Tip: If you don't know the answer, it's okay to admit it, but then try to
reason through the problem based on your existing knowledge.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 100

5. Practice Interview Questions

Overview: This final section offers a collection of practice problems and interview questions that
readers can use to test their knowledge and prepare for actual coding interviews. Each question is
accompanied by hints and solutions to help readers learn from their mistakes.

Topics Covered:

 Warm-Up Problems:
o Simple problems to get started with Python coding.
o Example:

 Intermediate Problems:
o Problems that require a deeper understanding of data structures and algorithms.
o Example:

 Advanced Problems:
o Challenging problems that test algorithmic thinking and problem-solving abilities.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 101

Example:

 Mock Interviews:
o Tips for conducting mock interviews with peers or mentors to simulate the real interview

experience.
o Example:

Tip: Schedule regular mock interviews with friends or mentors to get
comfortable with the interview format and receive constructive
feedback.

I Suggest you to give HackerRank Python Skills Accelerate Certification Test For More Deeper:

https://www.hackerrank.com/skills-verification/python_basic

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 102

16.Conclusion

1. Recap of Key Concepts

Overview: In this section, you’ll briefly revisit the main topics and concepts discussed throughout the
book. This recap will serve as a quick reference guide, helping readers consolidate their knowledge and
ensuring they’ve grasped the essential points.

Key Concepts Recap:

 Python Fundamentals:
o The basics of Python programming, including syntax, data types, and control structures.
o Importance: These fundamentals form the foundation for all Python projects.

 Project Development Process:
o The step-by-step approach to building Python projects, from ideation to deployment.
o Importance: Understanding this process is crucial for developing scalable and maintainable

software.
o Data Science ,AI ,ML ,Automation

 Real-World Applications:
o How Python is used in real-world scenarios, including voice assistants, recommendation

systems, image recognition, automated trading bots, and AI chatbots.
o Importance: These examples demonstrate the versatility and power of Python in solving

practical problems.
 Data Structures and Algorithms:

o A deep dive into essential data structures like lists, dictionaries, trees, and graphs, as well as
algorithms for searching, sorting, and optimization.

o Importance: Mastery of these topics is key to writing efficient and effective Python code,
especially in a technical interview setting.

 Interview Preparation:
o Tips and strategies for excelling in Python coding interviews, including problem-solving

techniques, communication skills, and handling difficult questions.
o Importance: This knowledge equips readers with the confidence and skills needed to succeed in

their job search and career advancement.

2. Further Learning Resources

Overview: This section provides readers with a curated list of resources to continue their learning
journey. Whether they’re looking to deepen their Python knowledge, explore advanced topics, or stay
updated with the latest trends, these resources will be invaluable.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 103

Learning Resources:

 Documentation and Tutorials:
o Python’s Official Documentation (python.org):

 The go-to resource for Python’s syntax, libraries, and updates.
o Real Python (realpython.com):

 Offers tutorials, quizzes, and articles on a wide range of Python topics.
 Communities and Forums:

o Stack Overflow:
 A Q&A platform where developers can ask questions and share knowledge.

o Reddit’s r/learnpython:
 A supportive community for Python learners of all levels.

 Open Source Contributions:
o GitHub:

 Contribute to Python projects, collaborate with other developers, and learn from open-
source code.

 You can also visit my Repositories
o Python’s Developer Community:

 Participate in Python Enhancement Proposals (PEPs) and stay involved with Python’s
development.

o Suryanshsk:
 Follow Me on Social to media to learn More About Programming

3. Final Words of Encouragement

Overview: As the book comes to a close, this section aims to inspire and motivate readers to apply
what they’ve learned, continue exploring, and keep pushing their boundaries.

Encouragement Points:

 Embrace the Journey:
o Learning Python and building projects is a continuous journey. Every line of code written, every

error encountered, and every project completed is a step forward. Embrace the learning
process, and don’t be afraid to make mistakes—they are an essential part of growth.

 Keep Practicing:
o The best way to master Python is through consistent practice. Keep coding, keep

experimenting, and keep challenging yourself with new projects. The more you code, the more
confident and skilled you’ll become.

 Stay Curious:
o The world of programming is vast and constantly evolving. Stay curious and open to learning

new things. Whether it’s a new Python library, a different programming language, or a novel
problem-solving technique, there’s always something new to discover.

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 104

 Believe in Yourself:
o The skills and knowledge you’ve gained from this book have equipped you to tackle real-world

challenges. Believe in your abilities, and don’t shy away from opportunities to apply what
you’ve learned. Your hard work and dedication will pay off.

 Build and Share:
o Use the knowledge you’ve acquired to build meaningful projects. Share your creations with the

world, contribute to open-source projects, or even start your own. By doing so, you’ll not only
reinforce your learning but also inspire others in the community.

 Never Stop Learning:
o Technology is always advancing, and there’s always something new to learn. Make lifelong

learning a part of your career. Whether it’s through books, courses, or hands-on projects,
continue to expand your horizons.

Scan This For Contact Me And for all other my resource

It’s a Just Starting Never Stop here Always Try to learn Something New ,Something More Deeper
.It’s Your Beginning Always Be happy ,Be Positive , Be Calm And Be Funny

 MASTERING PYTHON PROGRAMING (FROM BEGINNER TO ADVANCED WITH AI, ML & DATA SCIENCE)

SURYANSHSK (AVANISH SINGH) 105

“Innovation Starts with a single line of code and a boundless Vision “

 -Suryanshsk

